Published Cell lines used in perfusion cultures with the BioSep, Acoustic cell retention device. Cell line Viable Cell Aver. conc density (c/ml) DUKX B11- derived CHO (6) DUKX CHO (11) Human (27) recombinant CHO High Five Cells (9) TB/C3 Mouse (1) mouse Hybridoma Mouse mouse Hybridoma (8) Hybridoma (23) Mouse human (30) human hybridoma Hybridoma 2E11 Rat Hybridoma TFL-P (-) Monodus subeterraneus UTEX 151 (algae) (2) Saccharopolyspora Erythraea (fungi) (13) Sf9 ATCC 1711- References BioSep
1. H. Bierau, A. Perani, M. Al-Rubeai, A.N. Emery. A comparison of intensive cell culture
bioreactors operating with Hybridomas modified for inhibited apoptotic response. Journal ofbiotechnology 62, 195-207, 1998.
2. R. Bosma, W.A. Spronsen, J. Tramper, R. Wijffels. Ultrasound, a new separation technique
to harvest microalgae. Journal of Applied Phycology 15, 143-153, 2003.
3. J. Crowley. Using sound waves for cGMP manufacturing of a fusion protein with mammalian
cells. Bioprocess International. 46-49, 2004
4. M.C.F. Dalm, S.M.R. Cuijten, W.M.J. van Grunsven, J. Tramper, D.E. Martens. Effect of
feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Celldensity, viability and cell-cycle distribution. Biotechnology and bioengineering, Vol. 88 no.5,2004.
5. M.C.F. Dalm, M. Jansen, T.M.P. Keijzer, W.M.J. van Grunsven, A. Oudshoorn, J. Tramper,
D.E. Martens. Stable hybridoma cultivation in a pilot scale acoustic perfusion system: Longterm process performance and effect of recirculation rate. Biotechnology and bioengineering,Vol. 91 no.7, 2005.
6. J.E. Dowd, K.E. Kwok, J.M. Piret. Glucose-based optimization of CHO-cell perfusion
cultures. Biotechnology and Bioengineering. vol. 75, No. 2. 252-256, 2001.
7. V.M. Gorenflo, L. Smith, B. Dedinsky, B. Person, J. Piret. Scale-up and optimization of an
acoustic filter for 200 L/day perfusion of a 100L CHO Cell culture. Biotechnology andBioengineering, Vol 80, no 4, 438-444, 2002.
8. H. Heine, C.Y. Arod, A.R. Bernard, H.D. Blasey, Ultrasonic Cell Separation – Production of
Monoclonal Antibodies in Continuous Perfusion Cultures. Poster, 2000.
9. O. Merten. Constructive improvement of the ultrasonic separation device ADI 1015.
10. A.O.A. Miller. Combining cell culture & process operations. Sonoperfusion allows direct
feed with expanded-bed chromatography. Genetic engineering news 21, 2001.
11. T. Ryll, G. Dutina, A. Reyes, J. Gunson, L. Krummen, T. Etcheverry, Performance of small-
scale CHO perfusion cultures using an acoustic cell filtration device for cell retention:Characterization of separation efficiency and impact of perfusion on product quality. Biotechnology and Bioengineering, vol. 69 no. 4, 2000.
12. I.Z. Shirgaonkar, S. Lanthier, A. Kamen, Acoustic cell filter: a proven cell retention
technology for perfusion of animal cell cultures. Biotechnology advances 22, 433-444, 2004.
13. J.N. Wardell, M.E. Bushell. Kinetics and manipulation of hyphal breakage and its effect on
antibiotic production. Enzyme and microbial technology 25, 404-410, 1999.
14. S.M.Woodside, B.D. Bowen, J.M. Piret. Mammalian cell retention devices for stirred
perfusion bioreactor. Cytotechnology 28, 163-175, 1998.
15. J. Zhang, A. Collins, M. Chen, I Knyazev, R. Gentz. High-Density Perfusion Culture of
Insect Cells with a BioSep Ultrasonic Filter. Biotechnology an Bioengineering, Vol. 59, No. 3, 1998.
18th Esact, 2003. 16. J. Crowley, C. Schlukebir, M. Dijkstal, S. Hoekema, E. Olthof, S. Hussmann, S. Esser, A.
Herman, J.M. Coco Martin, R. Hof. CGMP manufacturing of a fusion protein in mammaliancells using a large scale acoustic perfusion system. Poster
17. M.C.F. Dalm, S.M.R. Cuijten, W.M.J. van Grunsven, A. Oudshoorn, J. Tramper, D.E.
Martens. Growth, death an lysis rate are only slightly influenced by perfusion an bleed rate inperfusion reactor. Poster
18. N. Chatzissavidou, P. Lindberg, H. Petterson, C. Ljung. Performance of CHO perfusion
cultures at high cell denisties using acoustic settlers and an improved protein free mediumcomposition. Poster
Cell culture engineering VIII. 200219. V.M. Gorenflo, L. Smith, B. Dedinsky, B. Person, J. Piret. Optimization of large scale
ultrasonic filter performance for a 100L CHO cell perfusion bioreactor. Poster.
20. V.M. Gorenflo, B.D. Boden, S. Angepat, J. Piret. Optimization of an acoustic perfusion
culture with novel air back flush system. Poster.
21. T. Bjorling, V. Chotteau, A. Gretander, O. Tuvesson, U. Dudel. Evaluation of cell separation
devices for the perfusion of animal cell culture for biopharmaceutical processes. Poster
22. J. Crowley, C. Schulkebir, M. Dijkstal, S. Hoeksema, E. Olthof, S. Hussman, A. Herman,
J.M. Coco Martin. Amino acid metabolism and productivity of CHO in a homogenouscontinuous perfusion culture using a ultrasonic retention device in varied controlledconditions. Poster.
17th Esact, 2001. 23. H.B.A. Wegkamp, N.H. Simpson, B.A. Bulthuis, A.D. Siemensma, D.E. Martens.
Performance of plant hydrolysate in a hybridoma perfusion system. Poster.
24. M. Dűrrschmid, K. Landauer, G. Simic, H. Klug, D. Mueller, T. Keijzer, F. Trampler, A.
Oudshoorn, M. Groschl, O. Doblhoff-Dier. Comparison of fluidised bed and ultrasonic cellretention systems for high cell density mammalian cell culture. Poster.
Other25. Upstream process development – manufacture of recombinant proteins in baby hamster
26. N.A. Kitchen, P.J. Phillips, W. Pilbrough, P.P. Gray. The use of on-line turbidity
measurement and an acoustic cell recycle system for perfusion culture of a suspension CHOcell line producing a human therapeutic protein. ECB Spain 2001. University of Agriculture, IAM, (Prof. H. Katinger)
27. D. Muller, G. Simic, W. Steinfellner, T. Keijzer, O. Doblhoff-Dier, H. Katinger. Continuous
perfusion versus discontinuous fed-batch – Production of a cytotoxic glycoprotein in protein-free CHO suspension cultures. Animal cell technology: From target to market. Proceedings ofthe 17th ESACT meeting. 2001.
28. Th. Gaida, O. Doblhoff, K. Strutzenberger, H. Katinger. W Burger, M Groschl, B. Handle, E.
Benes. Scale up of resonance field cell separation devices used in animal cell technology. poster and internet
29. S. Sonderhoff. Perfusion Culture utilizing acoustic resonance to separate and recycle cells.
30. Doblhoff-Dier, Th. Gaida, H. Katinger, W Burger, M Groschl, E. Benes. A novel Ultrasonic
resonance field device for the retention of animal cells. Biotechnology Prog. 10, 1994.
31. Th.Gaida, O. Doblhoff-Dier, K. Strutzenberger, H. Katinger, W Burger, M Groschl, E.
Benes. Selective retention of viable cells in ultrasonic resonance field devices. BiotechnologyProg 12, 73-76, 1996.
32. F. Trampler, S. A. Sonderhoff, P.W.S. Pui, D.G. Kilburn, J.M. Piret. Acoustic cell filter for
high density perfusion culture of Hybridoma cells. Biotechnology, 12, 281-284, 1994.
33. P.W.S. Pui, F. Trampler, S. A. Sonderhoff, M. Groeschl, D.G. Kilburn, J.M. Piret. Batch and
semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonancefields. Biotechnology Prog 11, 146-151, 1995.
34. E Benes, F. Hager, W. Bolek, M. Groschl. Separation of dispersed particles by drifting
ultrasonic resonance fields. Proceedings of the ultrasonics international 91 conference. 1991
35. C Gatot V. Degouys A.O.A. Miller. High-density cultures of mammalian cells in perfused
Cardiff University, (Prof. T. Coakley)
36. W.T. Coakley, D.W. Bardsley, M.A. Grundy. F. Zamani & D.J. Clarke. Cell Manipulation in
ultrasonic standing wave field. J. Chem. Tech. Biotechnol. 1989, vol 44. 43-62
37. G. Withworth, M.A. Grundy and W.T. Coakley. Transport and harvesting of suspended
particles using modulated ultrsound. Ultrasonics 29, 439-444, 1991.
38. D.G. Kilburn, D.J. Clarke, W.T. Coakley D.W. Bardsley. Enhanced sedimentation of
mammalian cells following acoustic aggregation. Biotechnology and bioengineering 559-562. 1989.
39. R.K. Gould, W.T. Coakley, M.A. Grundy. Upper sound pressure limits on particle
concentration in fields of ultrasonic standing-wave at megahertz frequencies. Ultrasonic 30,239-244, 1992.
40. G. Whitworth W.T. Coakley. Particle column formation in a stationary ultrasonic field.
Journal of acoustic soc. Am. 91, 79-85, 1992.
41. W.T. Coakley, G. Withworth, M.A. Grundy, R.K. Gould, R Allman. Ultrasonic manipulation
of particles and cells, ultrasonic separation of cells. Bioseparation 4, 73-83, 1994.
42. R. Allman, W.T. Coakley. Ultrasound enhanced phase partition of microorganisms.
43. M.S. Limaye W.T. Coakley. Clarification of small volume microbial suspension in an
ultrasonic standing wave. Society for applied microbiology. 84, 1035-1042, 1998
44. J.J. Hawkes W.T. coakley. A continuous flow ultrasonic cell-filtering method. Enzyme and
microbial technology 19, 57-62, 1996.
45. M.S. Limaye, P. Jenkins, J.J. Hawkes, W.T. Coakley. Separation of microorganisms by
ultrasonic standing waves. World congress on ultrasonics, 753-756, 1995.
46. M.S. Limaye, J.J. Hawkes. W.T. Coakley. Ultrasonic standing wave removal of
microorganisms from suspension in small batch systems. Journal of microbiological methods27, 211-220, 1996.
47. J.J. Hawkes, M.S. Limaye, W.T. Coakley. Filtration of bacteria and yeast by ultrasound-
enhanced sedimentation. Society for applied bacteriology, 1996.
48. J.J. Hawkes, D. Barrow, W.T. Coakley. Microparticle manipulation in millimetre scale
ultrasonic standing wave chambers. Ultrasonics 36, 925-931, 1998.
49. G. Haar, S.J. Wyard. Blood cells banding in ultrasonic standing wave fields: A physical
analysis. Ultrasound in Med & Biol. 4, 111-123, 1978.
50. J.J. Hawkes, T.W. Coakley, Force field particle filter, combining ultrasound standing waves
and laminar flow. Sensors and Actuators B, 75, 213-222, 2001.
51. L. Gherardini, J.J. Hawkes, S. Radel, D Mc loughlin W.T. Coakley, M. Groeshl, A.J.
McLoughlin. Micro-manipulation of particles in gel suspension by a cylindrical ultrasonicfield. AppliSens
52. STS 90, BioSep: a novel separation technology
53. Berg, H. Oudshoorn, A. Trampler, F. Keijzer, T. High density cell cultures in perfusions. A
perspective for vaccine production? Bioforum 2001.
54. T. Keijzer, F. Trampler, A. Oudshoorn, O. Doblhoff, H. Berg, Integrating acoustic perfusion
in mammalian cell culture. Scale-up and performance characterisation. 2001 (poster)
55. T. Keijzer, F. Trampler, A. Oudshoorn, H. Berg, Integrating acoustic perfusion in mammalian
cell culture. Scale-up to production. 2002 (poster)
56. T. Keijzer, F. Trampler, A. Oudshoorn, H. Berg, Integrating acoustic perfusion in mammalian
cell culture. Temperature control. 2003 (poster)
57. T. Keijzer. Characterisation of the 10L, 50L and 250L Biosep. Internal report AppliSens,
58. T. Keijzer. Testing steel cuvette 250L biosep, sterilization and separation efficiency. Internal
59. T. Keijzer. Water bath setting of 250L Biosep. Internal report AppliSens, 2000.
60. T. Keijzer. BioSep 1000L. Testing prototype nr 0. Flow distribution and separation. Internal
61. T. Keijzer. Characterization of the APS 990, 10 and 50L controller. Internal report
62. T. Keijzer. Temperature control. Internal report AppliSens, 2003.
Small Animal Benchmark — November 2008 1) Proposed modified Duke system: The ‘Modified Duke criteria’ were originally proposed by Li et al in 2000, to try to aid the diagnosis of infectious endocarditis in humans. These criteria have been altered for more practical relevance in the diagnosis of infectious endocarditis in canines. These criteria are described by MacDonald (in Kirks Cu
Optimization in Multi-implant Placement for Immediate Loading in Edentulous Arches Using a Modified Surgical Template and Prototyping: A Case Report Sérgio J. Jayme, DDS, MScD1/Valdir A. Muglia, DDS, MScD, DSc2/Rafael R. de Oliveira, DDS, MScD3/Arthur B. Novaes Jr, DDS, MScD, DSc4 Immediate loading of dental implants shortens the treatment time and makes it possible to give thepa